
Docker 101 Workshop

2

About Your Instructors

Agenda

Section 1: (One Hour)
What is Docker / What is Docker Not

Basic Docker Commands

Dockerfiles

PWD: Hello World

PWD: First Alpine Image

PWD: Static website

Section 2: (30 minutes)
Anatomy of a Docker image

Docker volumes

Volume use cases

PWD: Docker Volumes

Break (15 minutes)

Section 3: (45 minutes)
Networking

Docker Swarm

PWD: Swarm mode introduction

Section 4: (30 Minutes)
Docker compose / stacks

Secrets

PWD: Swarm stack introduction

PWD: Docker Compose with Secrets

4

Before we get started

All hands on portions are done via “Play With Docker”

Visit:

http://training.play-with-docker.com
Do the “hello-world” exercise to make sure everything’s copasetic

http://training.play-with-docker.com
http://training.play-with-docker.com

Section 1:
What is Docker
Basic Docker Commands
Dockerfiles

6

Docker containers are NOT VMs

• Easy connection to make
• Fundamentally different architectures
• Fundamentally different benefits

7

VMs

8

Containers

• Standardized packaging for
software and dependencies

• Isolate apps from each other

• Share the same OS kernel

• Works for all major Linux
distributions

• Containers native to Windows
Server 2016

What is a container?

10

They’re different, not mutually exclusive

11

Using Docker: Build, Ship, Run Workflow
Developers IT Operations

BUILD
Development Environments

SHIP
Create & Store Images

RUN
Deploy, Manage, Scale

12

Some Docker vocabulary
Docker Image
The basis of a Docker container. Represents a full application

Docker Container
The standard unit in which the application service resides and executes

Docker Engine
Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server based storage and distribution service for your images

Basic Docker Commands
$ docker image pull mikegcoleman/catweb:latest

$ docker image ls

$ docker container run –d –p 5000:5000 –-name catweb mikegcoleman/catweb:latest

$ docker container ps

$ docker container stop catweb (or <container id>)

$ docker container rm catweb (or <container id>)

$ docker image rm mikegcoleman/catweb:latest (or <image id>)

$ docker build –t mikegcoleman/catweb:2.0 .

$ docker image push mikegcoleman/catweb:2.0

14

Dockerfile – Linux Example

• Instructions on
how to build a
Docker image

• Looks very similar
to “native”
commands

• Important to
optimize your
Dockerfile

Dockerfile – Windows Example

Hands On Exercises
First Alpine Image
Static Website

http://training.play-with-docker.com

http://training.play-with-docker.com
http://training.play-with-docker.com

Section 2:
Anatomy of a Docker Container
Docker Volumes
Volume Use Cases

18

Let’s Go Back to Our Dockerfile

19

Each Dockerfile Command Creates a Layer

Kernel

Alpine Linux

Install Python and Pip

Upgrade Pip

Copy Requirements

Install Requirements

…

20

Docker Image Pull: Pulls Layers

21

Layers on the Physical Disk
• Logical file system by grouping different file system primitives into branches

(directories, file systems, subvolumes, snapshots)

• Each branch represents a layer in a Docker image

• Containers will share common layers on the host

• Allows images to be constructed / deconstructed as needed vs. a huge
monolithic image (ala traditional virtual machines)

• When a container is started a writeable layer is added to the “top” of the file
system

22

Copy on Write

Super efficient:
• Sub second instantiation times for containers
• New container can take <1 Mb of space

Containers appears to be a copy of the original image
But, it is really just a link to the original shared image

If someone writes a change to the file system, a copy of the affected
file/directory is “copied up”

23

Docker Volumes
• Volumes mount a directory on the host into the container at a specific location

$ docker volume create hello
hello
$ docker run -d -v hello:/world busybox ls /world

• Can be used to share (and persist) data between containers
• Directory persists after the container is deleted

• Unless you explicitly delete it

• Can be created in a Dockerfile or via CLI

24

Why Use Volumes

• Mount local source code into a running container

docker container run -v $(pwd):/usr/src/app/
mikegcoleman/catweb

• Improve performance
− As directory structures get complicated traversing the tree can slow system

performance

• Data persistence

Hands On Exercises (and Break)
Docker Volumes

http://training.play-with-docker.com

http://training.play-with-docker.com
http://training.play-with-docker.com

Section 3:
Networking
Docker Swarm

27

What is Docker Bridge Networking

Docker host

bridgenet1

Cntnr 1 Cntnr 2 Cntnr 3

Docker host

bridgenet2

Cntnr 4 Cntnr 5 Cntnr 6

bridgenet3

Cntnr 7

docker network create -d bridge --name bridgenet1

28

Docker Bridge Networking and Port Mapping

Docker host 1

Bridge

Cntnr1

10.0.0.8

L2/L3 physical network

:80

:8080172.14.3.55

$ docker container run -p 8080:80 ...

Host port Container port

29

What is Docker Overlay Networking

The overlay driver enables simple and secure multi-host networking

Docker host 1 Docker host 2 Docker host 3

CntnrA CntnrB CntnrC CntnrD CntnrE CntnrF

overnet

docker network create -d overlay --name overnet

30

What is Service Discovery

The ability to discover services within a Swarm

• Every service registers its name with the Swarm
• Every task registers its name with the Swarm
• Clients can lookup service names
• Service discovery uses the DNS resolver embedded inside each

container and the DNS server inside of each Docker Engine

31

Service Discovery Big Picture

“mynet” network (overlay)

Docker host 1

task1.myservice task2.myservice

Docker host 2

task3.myservice

task1.myservice 10.0.1.19
task2.myservice 10.0.1.20
task3.myservice 10.0.1.21
myservice 10.0.1.18

Swarm DNS (service discovery)

32

Service Virtual IP (VIP) Load Balancing
• Every service gets a VIP when it’s created

• This stays with the service for its entire life
• Lookups against the VIP get load-balanced across all healthy tasks

in the service
• Behind the scenes it uses Linux kernel IPVS to perform transport

layer load balancing
• docker service inspect <service> (shows the service VIP)

NAME HEALTHY IP
myservice 10.0.1.18
task1.myservice Y 10.0.1.19
task2.myservice Y 10.0.1.20
task3.myservice Y 10.0.1.21
task4.myservice Y 10.0.1.22
task5.myservice Y 10.0.1.23

Service
VIP

Load balance
group

33

What is the Routing Mesh

Native load balancing of requests coming from an external source

• Services get published on a single port across the entire Swarm
• Incoming traffic to the published port can be handled by all Swarm

nodes
• A special overlay network called “Ingress” is used to forward the

requests to a task in the service
• Traffic is internally load balanced as per normal service VIP load

balancing

34

Routing Mesh Example
Docker host 2

task2.myservice

Docker host 1

task1.myservice

Docker host 3

IPVS IPVS IPVS

Ingress network

8080 8080 8080

“mynet” overlay network

LB

1. Three Docker hosts
2. New service with 2 tasks
3. Connected to the mynet overlay
network
4. Service published on port 8080
swarm-wide
5. External LB sends request to Docker
host 3 on port 8080
6. Routing mesh forwards the request to
a healthy task using the ingress network

Node

Node

Node

Node
Node

Node

Swarm Topology

Node

Node

Node

Node

Node

Node

Manager

Worker

● Each Node has a role
● Roles are dynamic
● Programmable Topology

Swarm
Manager

Swarm
Manager

Swarm Topology: High Availability

Swarm
Manager

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Leader FollowerFollower

Swarm
Manager

Swarm
Manager

Swarm Topology: High Availability

Swarm
Manager

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Leader FollowerFollower

Swarm
Manager

Swarm
Manager

Swarm Topology: High Availability

Swarm
Manager

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Follower FollowerLeader

Swarm
Manager

Swarm
Manager

Swarm Topology: High Availability

Swarm
Manager

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Swarm
Worker

Follower FollowerLeader

Services \ Tasks

• Services provide a piece of functionality
• Based on a Docker image

• Replicated Services and Global Services

• Tasks are the containers that actually do the work
• A service has 1-n tasks

How service deployment works

$ docker service create declares
the service name, network, image:tag
and scale

Managers break down service into
tasks, schedules them and
workers execute tasks

Engines check to see what is running
and compared to what was declared
to “true up” the environment

Declare

ScheduleReconcile

Engine

Engine

Engine

Engine
Engine Engine

Services

$ docker service create --replicas 3 --name frontend --network mynet

 --publish 80:80/tcp frontend_image:latest

mynet

Engine

Engine

Engine

Engine
Engine Engine

Services

$ docker service create --replicas 3 --name frontend --network mynet

 --publish 80:80/tcp frontend_image:latest

$ docker service create --name redis --network mynet redis:latest

mynet

Engine

Engine

Engine

Engine
Engine Engine

Node Failure

$ docker service create --replicas 3 --name frontend --network mynet

 --publish 80:80/tcp frontend_image:latest

$ docker service create --name redis --network mynet redis:latest

mynet

Engine

Engine

Engine

Engine
Engine

Desired State ≠ Actual State

$ docker service create --replicas 3 --name frontend --network mynet

 --publish 80:80/tcp frontend_image:latest

$ docker service create --name redis --network mynet redis:latest

mynet

Engine

Engine

Engine

Engine
Engine

Converge Back to Desired State

$ docker service create --replicas 3 --name frontend --network mynet

 --publish 80:80/tcp frontend_image:latest

$ docker service create --name redis --network mynet redis:latest

mynet

Hands On Exercises (and Break)
Swarm Mode Introduction

http://training.play-with-docker.com

http://training.play-with-docker.com
http://training.play-with-docker.com

Section 4:
Docker Compose
Stacks
Secrets

Docker Compose: Multi Container Applications

49

Without Compose

• Build and run one container at a time
• Manually connect containers together
• Must be careful with dependencies and start

up order

With Compose

• Define multi container app in compose.yml file
• Single command to deploy entire app
• Handles container dependencies
• Works with Docker Swarm, Networking,

Volumes, Universal Control Plane

containers:
 web:
 build: .
 command: python app.py
 ports:
 - "5000:5000"
 volumes:
 - .:/code
 environment:
 - PYTHONUNBUFFERED=1
 redis:
 image: redis:latest
 command: redis-server --appendonly yes

Docker Compose: Multi Container Applications

Stacks: Multi-Container Applications

● A stack is a collection of related services
○ Requires Swarm

● Stacks are a Docker primitive
○ docker stack deploy
○ docker stack ps
○ docker stack rm

● Can be implemented via a compose file or
application bundle

51

What is a Secret?

Humans:
Passwords

Applications:
Secrets

52

Secrets management architected for containerized applications
• Usable Security: Integrated and designed with dev and ops workflows in mind
• Trusted Delivery: Encrypted storage and secure transit with TLS
• Infrastructure Independent: A portable security model across any

infrastructure across the lifecycle

All apps are safer - Only the assigned app can access the secret, even with
multiple apps on the same cluster

Docker Secrets Management

53

• Apps are safer when there is a standardized
interface for accessing secrets
− Legacy/microservices
− Dev & Ops
− Linux & Windows

• Apps are safer when secrets are not stored in the
app itself

Safer Apps with Docker Secrets Management

54

• Encrypted at rest in the cluster store

• Encrypted while in motion on the network

• Delivered only to the exact authorized app

• Available to containers only in memory, never
saved to disk

Trusted Delivery with Docker Secrets

55

WorkerWorker

Manager

Internal Distributed Store

Raft Consensus Group

ManagerManager

Worker

Web UI

Secrets Architecture

56

WorkerWorker

Manager

Internal Distributed Store

Raft Consensus Group

ManagerManager

Worker

Web UI

Secrets Architecture

57

WorkerWorker

Manager

Internal Distributed Store

Raft Consensus Group

ManagerManager

Worker

Web UI

Secrets Architecture

58

External
App

Hands On Exercises
Swarm Stack Introduction
Docker Compose with Secrets

http://training.play-with-docker.com

http://training.play-with-docker.com
http://training.play-with-docker.com

61

Container Network Model (CNM)

• Network

• Sandbox

• Endpoint

62

Containers and the CNM

Endpoint Sandbox Network Container

Container C1 Container C2 Container C3

Network A Network B

