
Dockercon 2017
Networking Workshop

Mark Church, Technical Account Manager @ Docker

Lorenzo Fontana, Docker Captain

Nico Kabar, Solutions Architect @ Docker

Agenda
1. Fundamentals & Network Drivers
2. Bridge Driver
3. Overlay Driver
4. MACVLAN Driver
5. Network Services: Service Discovery and Load Balancing
6. Network Design
7. Network Troubleshooting
8. Deep Dive: Network Namespaces, iptables, and VXLAN

2

The Container Network Model (CNM)

3

4

• Distributed in nature

• Many discrete components
that are managed and
configured differently

• Services that need to be
deployed uniformly across all
of these discrete
components

Networking is hard!

• 100s or 1000s of containers
per host

• Containers that exist for
minutes or months

• Microservices distributed
across many more hosts
(>>> E-W traffic)

Enter containers …

… this is worse.

Docker Networking Design Philosophy

6

Developers and
Operations

Batteries included
but removable

Put Users First Plugin API Design

7

Docker Networking Goals

Pluggable
Flexibility

Docker Native
UX and API
User Friendly

Distributed
Scalability +
Performance

Decentralized
Highly-Available

Out-of-the-Box
Support with

Docker Datacenter

Cross-platform

Container Network Model (CNM)

8

Network

Endpoint

Sandbox

9

Containers and the CNM

Container C1 Container C2 Container C3

Network A Network B

NetworkEndpointSandbox Container

10

What is Libnetwork?
Libnetwork is Docker’s native implementation of the CNM

CNM Libnetwork

What is Libnetwork?

11

Docker’s native
implementation of the CNM

Provides built-in service
discovery and load balancing

Library containing everything
needed to create and manage

container networks

Provides a consistent versioned API

Multi-platform, written in Go, open
source

Gives containers direct access
to the underlay network without

port mapping and without a
Linux bridge

Pluggable model (native and
remote/3rd party drivers)

Libnetwork and Drivers

12

Libnetwork has a
pluggable driver interface

Drivers are used to implement
different networking technologies

Built-in drivers are called
local drivers, and include:

bridge, host, overlay, MACVLAN

3rd party drivers are called
remote drivers, and include:
Calico, Contiv, Kuryr, Weave…

Libnetwork also supports pluggable IPAM drivers

13

Show Registered Drivers

Containers: 0
 Running: 0
 Paused: 0
 Stopped: 0
Images: 2
<snip>
Plugins:
 Volume: local
 Network: null bridge host overlay
...

$ docker info

14

Libnetwork Architecture

Libnetwork (CNM)

Docker Engine

Native Network Driver

Native IPAM Driver

Remote Network Driver

Remote IPAM Driver

Load Balancing

Service Discovery

Network Control Plane

15

Libnetwork Communication Flow

Libnetwork (CNM)

Docker Engine

Native Network Driver

Native IPAM Driver

Remote Network Driver

Remote IPAM Driver

Load Balancing

Service Discovery

Network Control Plane

docker network create -d overlay ov

16

Networks and Containers

docker network create –d <driver> …

Defer to Driver

docker run --network
…

Libnetwork Driver Driver Engine

Detailed Overview: Summary
• The CNM is an open-source container networking specification
contributed to the community by Docker, Inc.

• The CNM defines sandboxes, endpoints, and networks
• Libnetwork is Docker’s implementation of the CNM
• Libnetwork is extensible via pluggable drivers
• Drivers allow Libnetwork to support many network technologies
• Libnetwork is cross-platform and open-source

17

The CNM and Libnetwork simplify container networking and improve
application portability

Docker Networking Fundamentals

18

19

Libnetwork
(CNM)

1.13
17.03

Service
Discovery

• Multihost Networking
• Plugins
• IPAM
• Network UX/API

• Aliases
• DNS Round

Robin LB

Distributed
DNS

• Secure out-of-the-box
• Distributed KV store
• Load balancing
• Swarm integration
• Built-in routing mesh
• Native multi-host

overlay
• …

1.121.111.101.91.81.7

• HRM
• Host-Mode

Docker Networking on Linux
• The Linux kernel has extensive networking capabilities (TCP/IP stack,
VXLAN, DNS…)

• Docker networking utilizes many Linux kernel networking features
(network namespaces, bridges, iptables, veth pairs…)

• Linux bridges: L2 virtual switches implemented in the kernel
• Network namespaces: Used for isolating container network stacks
• veth pairs: Connect containers to container networks
• iptables: Used for port mapping, load balancing, network isolation…

20

Docker Networking is Linux (and Windows)
Networking

Host

Linux Bridge

eth0

VXLAN

IPVS iptables veth

net namespaces

eth1

TCP/IP

Docker
Engine

Devices

Kernel

User Space

Docker Networking on Linux and Windows
Linux Windows
• Network Namespace • Network Compartments

• Linux Bridge • VSwitch

• Virtual Ethernet Devices veths) • Virtual nics and Switch Ports

• IP Tables • Firewall & VFP Rules

Docker Windows Networking

Container Network Model (CNM)

24

Network

Endpoint

Sandbox

Linux Networking with Containers

• Namespaces are used extensively for
container isolation

• Host network namespace is the default
namespace

• Additional network namespaces are
created to isolate containers from each
other

25

Docker host

eth0

Cntnr1 Cntnr2 Cntnr3

eth1

Host Network Namespace

Docker host 2Docker host 1

26

Host Mode Data Flow

172.31.1.5 192.168.1.25
eth0 eth0

27

Demo: Docker Networking
Fundamentals

28

Lab Section 1

29

Bridge Driver

What is Docker Bridge Networking?

30

Single-host networking!
• Simple to configure and troubleshoot
• Useful for basic test and dev

Docker host

Bridge

Cntnr1 Cntnr2 Cntnr1

What is Docker Bridge Networking?

• Each container is placed in its own
network namespace

• The bridge driver creates a bridge (virtual
switch) on a single Docker host

• All containers on this bridge can
communicate

• The bridge is a private network restricted
to a single Docker host

31

Docker host

Bridge

Cntnr1 Cntnr2 Cntnr1

32

What is Docker Bridge Networking?

Docker host 1

Bridge

CntnrA CntnrB

Docker host 2

Bridge

CntnrC CntnrD

Docker host 3

Bridge 1

CntnrE CntnrF

Bridge 2

Containers on different bridge networks cannot communicate

Bridge Networking in a Bit More Detail

• The bridge created by the bridge driver
for the pre-built bridge network is called
docker0

• Each container is connected to a bridge
network via a veth pair which connects
between network namespaces

• Provides single-host networking
• External access requires port mapping

33

Docker host

Cntnr1 Cntnr2 Cntnr1

veth

Bridge

veth veth

eth0

Docker host 1
Cntnr1

10.0.0.8

34

Docker Bridge Networking and Port Mapping

Bridge

L2/L3 physical network

172.14.3.55

$ docker run -p 8080:80 ...

Host port Container port

:80

:8080

Docker host 1

35

Bridge Mode Data Flow

192.168.2.17 192.168.1.25

veth

eth0

eth0
172.17.10.5

Docker host 2

Bridge

veth

eth0

eth0 172.17.8.3

veth

eth0

172.17.10.6

Bridge

36

Demo
BRIDGE

37

Lab Section 2

38

Overlay Driver

39

What is Docker Overlay Networking?

Docker host 1

CntnrA CntnrB

All containers on the overlay network can communicate!

Docker host 2

CntnrC CntnrD

Docker host 3

CntnrE CntnrF

Overlay Network

The overlay driver enables simple and secure multi-host networking

Docker host 2Docker host 1

40

Building an Overlay Network (High level)

172.31.1.5

Overlay 10.0.0.0/24

192.168.1.25

10.0.0.410.0.0.3

Docker Overlay Networks and VXLAN

• The overlay driver uses VXLAN
technology to build the network

• A VXLAN tunnel is created through
the underlay network(s)

• At each end of the tunnel is a VXLAN
tunnel end point (VTEP)

• The VTEP performs encapsulation
and de-encapsulation

• The VTEP exists in the Docker Host’s
network namespace

41

Docker host 2Docker host 1

172.31.1.5 192.168.1.25

VTEPVTEP VXLAN Tunnel

Layer 3 transport
(underlay networks)

Docker host 2Docker host 1

172.31.1.5 192.168.1.25

Layer 3 transport
(underlay networks)

42

Building an Overlay Network (more detailed)

C1: 10.0.0.3 C2: 10.0.0.4

Network
namespace

Network
namespace

veth veth

VTEP
:4789/udp

VTEP
:4789/udp

Br0 Br0

VXLAN Tunnel

43

Overlay Networking Ports
Docker host 2Docker host 1

172.31.1.5

Management Plane (TCP 2377) - Cluster control

192.168.1.25

10.0.0.410.0.0.3

Data Plane (UDP 4789) - Application traffic (VXLAN)

Control Plane (TCP/UDP 7946) - Network control

Docker host 2Docker host 1

172.31.1.5 192.168.1.25

Layer 3 transport
(underlay networks)

44

C1: 10.0.0.3 C2: 10.0.0.4

VXLAN TunnelNetwork
namespace

Network
namespace

veth veth

VTEP
:4789/udp

VTEP
:4789/udp

Br0 Br0

Overlay Network Encryption with IPSec

IPsec Tunnel

Overlay Networking Under the Hood
• Virtual eXtensible LAN (VXLAN) is the data transport (RFC7348)
• Creates a new L2 network over an L3 transport network
• Point-to-Multi-Point tunnels
• VXLAN Network ID (VNID) is used to map frames to VLANs
• Uses Proxy ARP
• Invisible to the container
• The docker_gwbridge virtual switch per host for default route
• Leverages the distributed KV store created by Swarm
• Control plane is encrypted by default
• Data plane can be encrypted if desired

45

OVERLAY

46

Demo

47

MACVLAN Driver

eth0:
10.0.0.40

Docker host 1
Cntnr2

10.0.0.9

Cntnr1

10.0.0.8
V

10.0.0.68

P
10.0.0.25

What is MACVLAN?
• A way to attach containers to
existing networks and VLANs

• Ideal for apps that are not ready
to be fully containerized

• Uses the well known MACVLAN
Linux network type

48

L2/L3 physical underlay (10.0.0.0/24)

49

What is MACVLAN?
Each container gets its own MAC
and IP on the underlay network

A way to connect containers to
virtual and physical machines on

existing networks and VLANs
Each container is visible on
the physical underlay network

Parent interface has to be
connected to physical underlay

Gives containers direct access to the
underlay network without port
mapping and without a Linux bridge

Requires promiscuous mode

Gives containers direct access
to the underlay network without

port mapping and without a
Linux bridge

Sub-interfaces used to
trunk 802.1Q VLANs

Cntnr2Cntnr1

eth0:
10.0.0.30

Docker host 1

10.0.0.1910.0.0.18

Cntnr4Cntnr3

eth0:
10.0.0.40

Docker host 2

10.0.0.1110.0.0.10

Cntnr6Cntnr5

eth0:
10.0.0.50

Docker host 3

10.0.0.9210.0.0.91

50

What is MACVLAN?

L2/L3 physical underlay (10.0.0.0/24)

Promiscuous mode

V

10.0.0.68

P
10.0.0.25

51

What is MACVLAN?

V

10.0.0.68

P
10.0.0.25

Cntnr2

10.0.0.18

Cntnr2

10.0.0.19

Cntnr3

10.0.0.10

Cntnr4

10.0.0.11

Cntnr5

10.0.0.91

Cntnr6

10.0.0.92

L2/L3 physical underlay (10.0.0.0/24)

MACVLAN and Sub-interfaces
• MACVLAN uses sub-interfaces

to process 802.1Q VLAN tags.
• In this example, two

sub-interfaces are used to
enable two separate VLANs

• Yellow lines represent VLAN 10
• Blue lines represent VLAN 20

52

Docker host

L2/L3 physical underlay

802.1q trunk

Cntnr2

VLAN 10
10.0.10.1/24

VLAN 20
10.0.20.1/24

Cntnr2

eth0.10 eth0.20

MACVLAN 10 MACVLAN 20

eth0

eth0: 10.0.20.3eth0: 10.0.0.8

MACVLAN Summary
• Allow containers to be plumbed into existing VLANs
• Ideal for integrating containers with existing networks and apps
• High performance (no NAT or Linux bridge…)
• Every container gets its own MAC and routable IP on the physical
underlay

• Uses sub-interfaces for 802.1q VLAN tagging
• Requires promiscuous mode!

53

54

Demo
MACVLAN

Use Cases Summary
• The bridge driver provides simple single-host networking

− Recommended to use another more specific driver such as overlay,
MACVLAN etc…

• The overlay driver provides native out-of-the-box multi-host networking
• The MACVLAN driver allows containers to participate directly in existing
networks and VLANs

− Requires promiscuous mode
• Docker networking will continue to evolve and add more drivers and
networking use-cases

55

Docker Network Services

56

SERVICE REGISTRATION, SERVICE DISCOVERY, AND LOAD BALANCING

What is Service Discovery?

57

The ability to discover
services within a Swarm

Every service registers its
name with the Swarm

Every task registers its name
with the Swarm

Service discovery uses the DNS resolver
embedded inside each container and the
DNS server inside of each Docker Engine

Clients can lookup service names

58

Service Discovery in a Bit More Detail

“mynet” network (overlay, MACVLAN, user-defined bridge)

Docker host 1

task1.myservice task2.myservice

Docker host 2

task3.myservice

task1.myservice 10.0.1.19
task2.myservice 10.0.1.20
task3.myservice 10.0.1.21
myservice 10.0.1.18

Swarm DNS (service discovery)

task1.yourservice 192.168.56.51
yourservice 192.168.56.50

59

Service Discovery in a Bit More Detail

task1.myservice 10.0.1.19
task2.myservice 10.0.1.20
task3.myservice 10.0.1.21
myservice 10.0.1.18

Swarm DNS (service discovery)

“mynet” network (overlay, MACVLAN, user-defined bridge)

Docker host 1

task1.myservice task2.myservice

DNS resolver
127.0.0.11

DNS resolver
127.0.0.11

Engine DNS
server

Docker host 2

task3.myservice

DNS resolver
127.0.0.11

DNS resolver
127.0.0.11

Engine DNS
server

task1.yourservice

“yournet” network

Service Virtual IP (VIP) Load Balancing

60

NAME HEALTHY IP
Myservice 10.0.1.18
task1.myservice Y 10.0.1.19
task2.myservice Y 10.0.1.20
task3.myservice Y 10.0.1.21
task4.myservice Y 10.0.1.22
task5.myservice Y 10.0.1.23

Service VIP

Load balance
group

• Every service gets a VIP when it’s created
− This stays with the service for its entire life

• Lookups against the VIP get load-balanced across all healthy tasks in the service
• Behind the scenes it uses Linux kernel IPVS to perform transport layer load

balancing
• docker inspect <service> (shows the service VIP)

Service Discovery Details

61

Service and task
registration is

automatic and dynamic

Name-IP-mappings
stored in the Swarm
KV store

Container DNS and
Docker Engine DNS
used to resolve names
• Every container runs a local

DNS resolver (127.0.0.1:53)
• Every Docker Engine runs a

DNS service

Resolution is
network-scoped

1 2

34

62

Q & A

SERVICE DISCOVERY

63

Demo

ROUTING MESH

Load Balancing External Requests

64

What is the Routing Mesh?

65

Native load balancing of
requests coming from an

external source

Services get published on a single
port across the entire Swarm

A special overlay network called
“Ingress” is used to forward the
requests to a task in the service

Traffic is internally load balanced as
per normal service VIP load balancing

Incoming traffic to the published port
can be handled by all Swarm nodes

66

Routing Mesh Example
1. Three Docker hosts
2. New service with 2 tasks
3. Connected to the mynet

overlay network
4. Service published on port 8080

swarm-wide
5. External LB sends request to

Docker host 3 on port 8080
6. Routing mesh forwards the

request to a healthy task using
the ingress network

Docker host 2

task2.myservice

Docker host 1

task1.myservice

Docker host 3

IPVS IPVS IPVS

Ingress network

8080 8080

“mynet” overlay network

LB

8080

67

Routing Mesh Example
1. Three Docker hosts
2. New service with 2 tasks
3. Connected to the mynet

overlay network
4. Service published on port 8080

swarm-wide
5. External LB sends request to

Docker host 3 on port 8080
6. Routing mesh forwards the

request to a healthy task using
the ingress network

Docker host 2

task2.myservice

Docker host 1

task1.myservice

Docker host 3

IPVS IPVS IPVS

Ingress network

8080 8080

“mynet” overlay network

LB

8080

68

Host Mode vs Routing Mesh
Docker host 2

task2.myservice

Docker host 1

task1.myservice

Docker host 3

IPVS IPVS IPVS

Ingress network

8080 8080

“mynet” overlay network

LB

8080

Docker host 2

task2.myservice

Docker host 1

task1.myservice

Docker host 3

bridge

LB

bridge

task3.myservice

bridge
8080 8080 8080

Demo
ROUTING MESH

69

APPLICATION LAYER LOAD BALANCING (L7)

70

HTTP Routing Mesh (HRM) with
Docker Datacenter

71

What is the HTTP Routing Mesh (HRM)?
Native application layer (L7) load balancing of requests coming
from an external source

Load balances traffic based on hostnames
from HTTP headers

Allows multiple services to be accessed
via the same published port

Requires Docker Enterprise Edition

Builds on top of transport layer routing mesh

2
Enable HTTP routing mesh in UCP

a) Creates ucp-hrm network

b) Creates ucp-hrm service and exposes
it on a port (80 by default)

Create new service
a) Add to ucp-hrm network

b) Assign label specifying hostname
(links service to http://foo.example.com)

1

Enabling and Using the HTTP Routing Mesh

72

docker service create -p 8080
\
--network ucp-hrm \
--label
com.docker.ucp.mesh.http=8080=
http://foo.exsample.org
...

http://foo.example.com/

HTTP Routing Mesh (HRM) Flow

73

654321 7

Enable HRM in
UCP and

assign a port

HTTP traffic
comes in on

the HRM port

Create a service
(publish a port, attach it

to the ucp-hrm
network, and add the

com.docker.ucp.mesh
.http label)

Gets routed to
the ucp-hrm

service

Host value is
matched with the

com.docker.ucp.mesh.http
label for a service

HTTP header
is inspected for

host value

Request is passed to
the VIP of the service

with the matching
com.docker.ucp.mesh

.http label

“ucp-hrm” overlay network

74

HTTP Routing Mesh Example
Docker host 1 Docker host 2 Docker host 3

ucp-hrm.2 :80

Ingress network

ucp-hrm
http://foo.example.com

Service: user-svc
VIP: 10.0.1.4

LB
foo.example.com:80ucp-hrm:80

ucp-hrm.3 :80

user-svc.2
com.docker.ucp.mesh.http=

8080=http://foo.example.com

ucp-hrm.1 :80

user-svc.1
com.docker.ucp.mesh.http=

8080=http://foo.example.com

HRM

75

Demo

Q & A

76

Docker Network Troubleshooting

77

Blocked ports, ports required to
be open for network mgmt,
control, and data plane

Iptables issues
Used extensively by Docker Networking, must
not be turned off
List rules with $ iptables -S, $ iptables -S -t nat

Network state information stale
or not being propagated
Destroy and create networks again
with same name

General connectivity
problems

Common Network Issues

78

Required Ports

79

80

General Connectivity Issues

Network always gets
blamed first :(

Eliminate or prove connectivity first,
connectivity can be broken at service

discovery or network level

Service Discovery
Test service name resolution or

container name resolution

drill <service name> (returns
the service VIP DNS record)

drill tasks.<service name>
(returns all task DNS records)

Network Layer
Test reachability using VIP or

container IP

task1$ nc -l 5000, task2$
nc <service ip> 5000

ping <container ip>

81

Netshoot Tool

Has most of the tools you need in a container to
troubleshoot common networking problems

iperf, tcpdump, netstat, iftop, drill, netcat-openbsd, iproute2,
util-linux(nsenter), bridge-utils, iputils, curl, ipvsadmin, ethtool…

Connect it to a specific
network namespace (such as a
container’s) to view the network
from that container’s perspective

Connect it to a docker network
to test connectivity on that network

Two Uses

82

Netshoot Tool

Connect to a container namespace

docker run -it --net container:<container_name> nicolaka/netshoot

Connect to a network

docker run -it --net host nicolaka/netshoot

Once inside the netshoot container, you can use any
of the network troubleshooting tools that come with it

83

Network Troubleshooting Tools

Capture all traffic to/from port 999 on eth0 on a myservice container

docker run -it --net
container:myservice.1.0qlf1kaka0cq38gojf7wcatoa nicolaka/netshoot
tcpdump -i eth0 port 9999 -c 1 -Xvv

See all network connections to a specific task in myservice

docker run -it --net
container:myservice.1.0qlf1kaka0cq38gojf7wcatoa nicolaka/netshoot
netstat -taupn

84

Network Troubleshooting Tools

Test DNS service discovery from one service to another

docker run -it --net
container:myservice.1.bil2mo8inj3r9nyrss1g15qav nicolaka/netshoot drill
yourservice

Show host routing table from inside the netshoot container

docker run -it --net host nicolaka/netshoot ip route show

85

Lab Section 3

THANK YOU

