
Docker
Security
Workshop

Goals of this Workshop

Understand and get
comfortable with Docker

security technologies

Swarm Mode Security
Secrets Management

Security Scanning
Content Trust

Networking
…

Understand and get
comfortable with Linux
security technologies

AppArmor
seccomp

Capabilities
…

Agenda

Setting the Scene

Docker Security
Technologies

Linux Security
Technologies

1. Docker Security Pillars
2. Anatomy of a Container
3. Docker Client and Daemon

1. Trusted Code Deployment with Docker Content Trust
2. Strong Vulnerability Detection with Docker Security Scanning
3. Secure Orchestration by Default with Swarm Mode
4. Secure App-centric Networking with Docker Overlay Networks
5. Container Native Secrets Management with Docker Secrets

1. User Management
2. AppArmor
3. seccomp
4. Capabilities

Setting the
Scene

Docker Security Pillars

The Three Pillars of Docker
Security

Infrastructure
IndependentUsable Security Trusted delivery

Docker Security: Aim of the
Game

Secure by default

Sensible defaults
configured

out-of-the-box (OOB)

Anatomy of a
Container

Containers: The Big
Picture

User space
• Libraries
• Binaries
• Other dependencies

Ring-fenced area of OS/kernel:
• Process tree
• Filesystem root
• Network stack
• …
• Limits on resource consumption

User space

Container
App code

Libs/
Dependencies

Shared
Kernel

Resources

Limits

Container Container

Kernel

App code

Libs/
Dependencies

Shared
Kernel

Resources

Limits

App code

Libs/
Dependencies

Shared
Kernel

Resources

Limits

Containers: Linux Kernel
Features

Namespace examples:
• The PID namespace stops processes in one

container from seeing and interacting with
processes in another container (or on the
host)

• The User namespace allows containers to
run processes as root inside the container
but as non-privileged users outside the
container (on the host)

Control Groups examples:
• Can limit the amount of CPU or memory a

container can use, and prevent them from
consuming all system resources

User space

Container
App code

Unix filesystem

Kernel
namespaces

Control
Groups

(cgroups)

Container Container

Kernel

App code

Unix filesystem

Kernel
namespaces

Control
Groups

(cgroups)

App code

Unix filesystem

Kernel
namespaces

Control
Groups

(cgroups)

Containers: Protection
Against Fork Bombs

:(){ :|: & };:
fork… …

fork

fork… …

The Basics

Docker Client
and Daemon

Docker: Client-server
Architecture

Daemon/ServerClient

REST APICLI

Client Daemon/Server

Docker: Client-server
Architecture

Local IPC socket (default)

Network socket (optional)

Local IPC socket is secure by default

Secure by default

Should be configured for TLS
HTTP = 2375/tcp
HTTPS = 2376/tcp

Manual configuration required to secure the network socket
• Client mode: Client will only talk to authenticated daemons
• Daemon mode: Daemon will only talk to authenticated clients

Docker: Client-server Architecture

HTTP/S

IPC sock

Host

Host

Daemon

Host

(network)

HTTP/S

Client

DaemonClient

Connecting Securely to
Docker Registries

Can use TLS to secure (authenticate and encrypt)
traffic between Docker and Docker Registry:

Create a directory under
/etc/docker/certs.d for the Registry

Include client key and client certificate

Include CA certificate
Host

Connecting Securely to
Docker Registries

• If the Registry is accessed over a specific port you must
include the port in the directory name. E.g.
/etc/docker/certs.d/registry.corp.internal:5000

• Docker expects CA certificates to have a .crt extension
and client certificates .cert

https://registry.corp.internal/etc/docker/certs.d/registry.corp.internal/

client.cert

client.key

ca.crt

Host

Q&A

Docker Security
Technologies

With Docker Content Trust

Trusted Code
Deployment

Background: Trust is
Vital!
Applications are vital to businesses

Untrusted networks like the internet are like
the Wild West

Goal: Make it simple to verify and trust the
software you deploy

Context

The Big Picture

Sign Verify

Docker Content Trust:
Pushing and Pulling

Publisher Consumer

Image repo

Docker Content Trust Provides…

Signatures

Collections

Expiry

Collaborators

Docker Content Trust:
Easy to Enable

$ export DOCKER_CONTENT_TRUST=1

push pull build run

Swarm-wide

Docker Content Trust: Enable in UCP

push pull build run

Cluster-wide

Error creating service

Docker Content Trust:
Unsigned Images

Universal Control Plane Web UI

$ docker pull repo/image:unsigned
...
Error: No trust data for unsigned

Docker client

Docker Content Trust:
Malicious Images
$ docker pull repo/image:fakesignature

Warning: potential malicious behavior - trust data has insufficient
signatures for remote repository docker.io/repo/image: valid signatures
did not meet threshold

Docker Content Trust: Stale
Images

$ docker pull repo/image:stale

Error: remote repository docker.io/repo/image out-of-date: targets
expired at Sun Mar 26 03:56:12 PDT 2017

Docker Content Trust: How it
Works

GO

Image Publisher

Docker User

Docker Image

Pre-repository key

Root key

Digital Signature
Verification

Valid Digital Signature
over Docker Image

GO

GOGO

Image Repository

GOGO GO

Docker Content Trust:
Signing the Entire Chain
debian:jessie

pypy 3

pypy:3 user/pypybase:latest

django
app

extra
libraries

Docker Datacenter:
Taking DCT to the Next
Level

Notary is a client-server app that
implements The Update Framework
(TUF) that underpins Docker Contents
Trust
• Publishes and manages your

trusted collections
− Delegations
− Freshness
− Trust thresholds
− Survives key compromise

Built-in
Notary Server
Simplifies deployment
Integrates with Docker
Trusted Registry (DTR)

Docker Datacenter:
Taking DCT to the Next
Level

Simplifies deployment
Integrates with Docker
Trusted Registry (DTR)

Simple Trust
Thresholds

Choose UCP users and
teams as authorized

signers

N
Built-in

Notary Server
Simplifies deployment
Integrates with Docker
Trusted Registry (DTR)

Docker Datacenter:
Taking DCT to the Next
Level

Universal Control Plane web
UI

• Easily create a list of
required signers

Image Best Practice: Use Official
Images and Use Small Images

Use minimalist base images
• Smaller images reduce the attack surface
• The official Alpine base image is <5MB‘
Use official images as base images
• All official images are scanned for vulnerabilities
• Usually follow best practices

Image Best Practice: Use Official
Images and Use Small Images

$ docker pull alpine@sha256:3dcdb92...b313626d99b889d0626de158f73a

sha256:3dcdb92d7432d...e158f73a: Pulling from library/alpine
e110a4a17941: Pull complete
Digest: sha256:3dcdb92d7432d56604...47b313626d99b889d0626de158f73a
Status: Downloaded newer image for alpine@sha256:3dcd...b889d0626de158f73a

Pull images by digest
• Image digests are a hash of the image’s config object

− This makes them immutable
− If the contents of the image are changed/tampered with, the digest will be different

If Docker Content Trust is enabled all images are automatically pulled by digest

Q&A

Enabling and Testing
Docker Content Trust

Lab

With Docker Security
Scanning

Strong Vulnerability
Detection

What Security Scanning

Tool/service that scans images for
vulnerabilities
• Operates in the background
• Performs deep binary-level scanning

of image layers
• Checks against database(s) of

known vulnerabilities
• Provides detailed vulnerability report
Helps protect software and achieve software
compliance

Security Scanning
Offerings

Simplifies deployment
Integrates with Docker
Trusted Registry (DTR)

On premises
Available as part of
Docker Datacenter

Hosted
Available for private

repositories on Docker Hub
and Docker Cloud

Security Scanning:
Vulnerability Reports

Useful high-level reports

alpine:edge

alpine:lates
t

Security Scanning:
Vulnerability Reports

Security Scanning: DDC/DTR
Vulnerability Reports

Security Scanning: How it Works

Push Image

Docker
Cloud

Database

Scanner

Scan
Trigge

r
CVE

databases

CVE
Scanning
validation

service

BOM

Plugin Framework

Notifications

Docker Security Scanning

Security Scanning with
Docker Datacenter

Docker Trusted Registry (DTR)
On premises

Configured via DTR

Security Scanning with
Docker Datacenter
Click
<Settings>

Click
<SECURITY>

Click <on>

Online: Will automatically sync the vulnerability
database over the internet

Offline: Will not update vulnerability database over
the internet. Allows admins to manually upload .tar
files.

The offline method is ideal for security sensitive
scenarios where DTR and other systems are
air-gapped from the internet

Security Scanning with
Docker Datacenter

Scanning configured on a per-repo basis

Default is to scan every new image that is
pushed

Can configure a repo to only support manual
scans (if you don’t want to trigger a scan every
time an image is pushed)

Security Scanning with
Docker Datacenter

Scan on every push Do not scan on every
push

Security Scanning: Summary

Official repos/images
automatically scanned

Binary level scans pick
up statically linked

bins

Checks against CVE
databases

Provides
comprehensive bill of

materials (BOM)

Q&A

Testing Security Scanning

Lab

With Swarm Mode

Secure Orchestration
by Default

Swarm Mode: Overview
Native clustering of Docker Hosts

• One or more Managers
(control plane)

• One or more Workers
(data plane)
– Run user workloads

• Strong default security
(out-of-the-box)

Manager Manager Manager

Worker Worker Worker

Swarm (cluster)
Docker host Docker host Docker host

Docker host Docker host Docker host

Swarm (cluster)

Swarm Mode: Client Certificates
Every node gets a Client
cert that identifies:

The node

The Swarm that it’s a member of

Its role in the Swarm

manager
1

Docker host Name:
manager1
ID: ofcm6bd…
sha256:a3ef…
Swarm: 3acc2…
Role: manager
Expires: 2018…

Swarm Mode:
Cryptographic Guarantees

Swarm
ID: 3acc2… manager

1

Docker host Name: manager1
ID: ofcm6bd…
sha256:a3ef…
Swarm: 3acc2…
Role: manager
Expires: 2018…

worker1

Docker host Name: worker1
ID: 237b3e…
sha256:39ock…
Swarm: 3acc2…
Role: worker
Expires: 2018…

manager
2

Docker host Name:
manager2
ID: bd550f…
sha256:hxi3…
Swarm: 3acc2…
Role: manager
Expires: 2018…

worker2

Docker host Name: worker2
ID: 5f99ae1…
sha256:md66c…
Swarm: 3acc2…
Role: worker
Expires: 2018…

CA

Creating a New Swarm
$ docker swarm init

Swarm initialized: current node
(ofcm6bdy5qcrlievawsw9wqfp) is now a manager.

To add a worker to this swarm, run the following
command:

docker swarm join \
--token SWMTKN-1-

31fxss83n3puc6bd11wm8vxged2ul94fxfbckjdy0rj37agk
ko-bz14m6jyeakhzvccs7wnbmmof \

172.31.45.44:2377

To add a manager to this swarm, run 'docker
swarm join-token manager' and follow the
instructions.

Raft Consensus Group

Distributed Cluster Store

Manager

CA

Docker host

C
ACA

Using and External Root CA

• Swarm supports using
external CAs

• Pass the --external-ca flag
to the docker swarm init
command

Manager Manager Manager

Worker Worker Worker

CA

Raft Consensus Group

Adding More Managers
$ docker swarm join-token manager

To add a manager to this swarm, run the
following command:

docker swarm join \
--token SWMTKN-1-31fx-8z0l... \
172.31.45.44:2377

$ docker swarm join \
> --token SWMTKN-1-31fx-8z0l... \
> 172.31.45.44:2377

This node joined a swarm as a manager.

Manager Manager Manager

Distributed Cluster Store

Docker host Docker host Docker host

CA

Adding Workers
$ docker swarm join-token worker

To add a worker to this swarm, run the
following command:

docker swarm join \
--token SWMTKN-1-31fx-bz14... \
172.31.45.44:2377

$ docker swarm join \
> --token SWMTKN-1-31fx-bz14... \
> 172.31.45.44:2377

This node joined a swarm as a worker.

Manager Manager Manager

Worker Worker Worker

CA

Distributed Cluster Store

Raft Consensus Group

Docker host Docker host Docker host

Docker host Docker host Docker host

Protect your Join Tokens
Only approved nodes should be allowed
to join your Swarm!

To join a Swarm as a manager, a node
must specify the manager join token.
Keep it safe!

To join a Swarm as a worker, a node must specify the worker join token. Keep it
safe!

$ docker swarm join \
> --token SWMTKN-1-31fx-bz14... \
> 172.31.45.44:2377

This node joined a swarm as a worker.

You can rotate join tokens with:
$ docker swarm join-token --rotate worker|manager

Swarm Mode: Client Certificates
$ openssl x509 -in
/var/lib/docker/swarm/certificates/swarm-node.crt -text

Certificate:
...

Issuer: CN=swarm-ca
Validity

Not Before: Mar 9 15:21:00 2017 GMT
Not After : Jun 7 16:21:00 2017 GMT

Subject: O=lgz5xj1eqg..., OU=swarm-manager, CN=ofcm6bdy...
...

X509v3 Subject Alternative Name:
DNS:swarm-manager, DNS:ofcm6bdy..., DNS:swarm-ca

...
-----BEGIN CERTIFICATE-----
MIICNDCCAdugAwIBAgIUCoRaj23j4h5
...

All nodes get a client
certificate

O = Swarm ID

OU = Role

CN = Node ID

Client certificates are used
for mutual authentication
and encryption.

Swarm ID
Node Role Node ID

Swarm Mode: Client Certificates
Certificate:
...
Issuer: CN=swarm-ca
Validity
Not Before: Mar 9 15:21:00 2017 GMT
Not After : Jun 7 16:21:00 2017 GMT

Subject: O=lgz5xj1eqg4pcd0bib75i4fhd, OU=swarm-manager, CN=ofcm6bdy5qcrlievawsw9wqfp
X509v3 Subject Alternative Name:
DNS:swarm-manager, DNS:ofcm6bdy..., DNS:swarm-ca

...

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
4ckd17z0uk6fzi0tfwyxbra1g ip-172-31-34-195 Ready Active
ofcm6bdy5qcrlievawsw9wqfp * ip-172-31-45-44 Ready Active Leader
p73dypqeyeg9p7iab9d0qzns5 ip-172-31-46-1 Ready Active Reachable
ubt37ywh3j171f6lpv3n5et4u ip-172-31-43-107 Ready Active Reachable
uf7y3ap5qdyrwmxt9upnctxws ip-172-31-46-102 Ready Active

Swarm Info
The docker info command
can be used to display
information about the Swarm
that a node belongs to.

Some security related items
are shown in yellow

$ docker info
...
Swarm: active
NodeID: ofcm6bdy5qcrlievawsw9wqfp
Is Manager: true
ClusterID: lgz5xj1eqg4pcd0bib75i4fhd
Managers: 3
Nodes: 5
Orchestration:
Task History Retention Limit: 5
Raft:
Snapshot Interval: 10000
Number of Old Snapshots to Retain: 0
Heartbeat Tick: 1
Election Tick: 3
Dispatcher:
Heartbeat Period: 5 seconds
CA Configuration:
Expiry Duration: 3 months
Node Address: 172.31.45.44
Manager Addresses:
172.31.43.107:2377
172.31.45.44:2377
172.31.46.1:2377

Name: manager1

ID (CN): ofcm6bdy5qcrlievawsw9wqfp

Swarm (O): lgz5xj1eqg4pcd0bib75i4fhd

Role (OU): swarm-manager

Not before: Mar 9 15:21:00 2017 GMT

Not after: Jun 7 16:21:00 2017 GMT

sha256: hxi3…

Simple Certificate Rotation
Automatic client certificate
rotation
• defaults to 90 days
• Customizable

Swarm operates a whitelist of
valid certificates

Renewal times are randomized to
prevent overloading the CA

Certificate Rotation
Only client certificates can be rotated*

Use the --cert-expiry flag to change the rotation period

The following command will build a Swarm that rotates client
certificates every 30 days

The following command updates a Swarm to rotate client
certificates every 60 days

docker swarm init --cert-expiry 720h0m0s

docker swarm update --cert-expiry 1440h

Docker Swarm: Secure
Cluster Store

The cluster store is encrypted
• Anything stored in the cluster

store is encrypted (secrets
etc.)

The cluster store is
distributed/replicated across all
managers

Raft Consensus Group

Manager Manager Manager

Distributed Cluster Store

Docker host Docker host Docker host

CA

Docker Swarm Security: Recap

Secure Join Tokens Client Certificates

Encrypted Cluster
Store Certificate Rotation

Docke
r

Swarm

Docker Swarm: Workload Placement

Constraints

Limit the nodes that
service tasks can run on

node.id | node.hostname | node.role | …

engine.labels.operatingsystem | …

node.labels.zone | node.labels.pcidss …

Constraints

Constraints use the following:

Built-in node attributes

Built-in Engine labels

User-define node labels

Constraints: Only Run
Tasks on Worker Nodes

$ docker service create \
--name svc1 \
--constraint ‘node.role == worker’ \
redis:latest

Constraints: Only Run Tasks
on Nodes Running Ubuntu

$ docker service create \
--name svc1 \
--constraint ‘engine.labels.operatingsystem == ubuntu 16.04’ \
redis:latest

72

Constraints: User-defined Labels
$ docker node update \

--label-add zone=prod1 \
node1

$ docker service create \
--name svc1 \
--constraint ‘node.labels.zone == prod1’ \
redis:latest

Constraints: User-defined Labels
$ docker node update \

--label-add zone=prod1 \
node1

$ docker service create \
--name svc1 \
--constraint ‘node.labels.zone != prod1’ \
redis:latest

User-defined Labels

Simple key/value pairs

Great way to organize nodes

Only apply within the Swarm

$ docker node update --label-add

Manager Manager Manager

Worker Worker Worker

zone=prod1 zone=prod1 zone=prod2

zone=prod2 zone=prod2 zone=prod1

Swarm ID: xah78sba9m228…

docker service create \
--name web-fe \
--constraint ‘node.labels.pcidss
== yes’ \
--replicas=3
corp1/nginx:hardened

PCI-DSS Example

mgr1 mgr2 mgr3

wrkr1 wrkr2 wrkr3

pcidss=no pcidss=no pcidss=yes

pcidss=yes pcidss=yes pcidss=no

Swarm ID: xah78sba9m228…

• Single Swarm with 6 nodes
• 3 nodes with label pcidss=yes
• 3 nodes with label pcidss=no
• Service deployed with constraint:

• node.labels.pcidss == yes
• Service tasks can only be

scheduled on nodes with
label pcidss=yes

Q&A

Building A Secure Swarm

Lab

with Swarm Mode

Secure App-centric
Networks

Background: Networking is
Important!
Networking is integral to distributed
applications

But networking is hard, vast, and
complex!

Goal: Make Docker networking SIMPLE and SECURE!

Docker Networking Architecture
Libnetwork (CNM)

Docker Engine

Native Network Driver

Native IPAM Driver

Remote Network
Driver

Remote IPAM Driver

Load Balancing

Service Discovery

Network Control
Plane

1.121.111.101.91.81.7

Libnetwork
(CNM)

Service
Discovery

• Multihost
Networking

• Plugins
• IPAM
• Network UX/API

• Aliases
• DNS Round Robin

LB

Distributed
DNS

• Secure out-of-the-box
• Encrypted distributed KV

store for network config and
state

• Encrypted control plane
• Encrypted data plane
• Built-in routing mesh
• Overlay…

PCI-DSS Example

Every Swarm gets a distributed
cluster store
• Encrypted by default
• Stores network config and

state

All node-to-node
communication is secured by
mutual TLS

Manager Manager Manager

Worker Worker Worker

Swarm

CA

Distributed Cluster Store
(Network config and state)

Secure Networking:
Container to Container

Control Plane
Encrypted by default

Data Plane
Can be easily encrypted

• AES (GCM)
• Keys rotated every 12

hours

• --opt encrypted
• AES (GCM)
• Keys rotated every 12 hours

Secure Container
Networking: Example
$ docker network create -d overlay --opt encrypted my-net

Control Plane encrypted Data Plane encrypted

Keys automatically rotated Config in secure cluster
store

Secure Container
Networking: Lazy Creation

Newly created networks are only created on nodes that need them

Nodes that do not need them do not get them (more secure)

Reduces network chatter (more secure)

RethinkDB
Proxy

Secure Container
Networking: Isolation

load_balancer_net app_net db_net

nginx

my_app

Internal
service

RethinkDB

RethinkDB

RethinkDB

Secure Container
Networking: Isolation

load_balancer_net

app_net

db_net

RethinkDB
Proxy

nginx

my_app

Internal
service RethinkDB

Secure Container
Networking: Isolation

• Micro segmentation
• By default, containers can only talk

to other containers on the same
network

• Service Discovery is network-scoped
– Containers cannot automatically

discover services and containers on
other networks

RethinkDB
Proxy

nginx

my_app

Internal
service RethinkDB

load_balancer_net app_net db_net

Networking Gotcha

Starting a container with the --net=host will allow the
container to see all networking traffic on the Docker
host!
$ docker container run --rm -it \
--net=host \
alpine sh

Avoid at all costs!

Q&A

Docker 1.13 Introduced Native
Docker Secrets Management

Container Native
Secrets Management

What is a Secret

Batteries
included but
removable

Plugin API
Design

Humans:
Passwords

Applications:
Secrets

The Three Pillars of Docker Security

Infrastructure
IndependentUsable Security Trusted delivery

Secrets

Secrets Management:
Usable Security

Usable
Security

Standardized interface for developers

Standardized interface for operations teams

Fits most existing methods of accessing secrets

Leverages existing security features of Swarm
Mode

Secrets Management:
Usable Security (Devs)

• Compose and services
support for secrets

• Define services,
secrets, networks and
volumes in a single file

Secrets Management:
Usable Security (Ops)

• Integrated secrets and app
management in Docker
Datacenter

• Deploy Compose file directly
with no code changes

• Add granular access control
to secrets and services

Secrets Management:
Simplified Workflow (example)

Development
environment

Test
environment

Production
environment

Secret: password Secret: Password123 Secret: @e~£.#$$e…

/run/secrets/app-sec /run/secrets/app-sec /run/secrets/app-sec

Secrets Management:
Trusted Delivery
Secrets encrypted at rest in the cluster store

Secrets encrypted in-flight over the network

Secrets only available to authorized apps/services

Secrets never persisted to disk in containers or on nodes

Secrets Management:
Trusted Delivery

Raft Consensus Group

Manager Manager Manager

Internal Distributed
Store

Worker 1 Worker 2 Worker 3

Web
UI

Docker Secrets Management:
Infrastructure Independence

Infrastructure
Independent

Security is inherent to the Docker
platform

Security features and guarantees travel
with your app across different
infrastructures

Docker Secrets
Management: Summary

Usable
Security

Secure defaults with tooling that is native
to both dev and ops

Infrastructure
Independent

Trusted Delivery

Safer Apps

Everything needed for a full functioning app is
delivered safely and guaranteed to not be tampered
with

All of these things in your system are in the app
platform and can move across infrastructure
without disrupting the app

+

+

=

Raft Consensus Group

Manager Manager Manager

Distributed cluster
store (K/V)

Worker 1 Worker 2 Worker 3

Secret create

Secrets Management: Summary

Secrets Management: Summary

Infrastructure
IndependentUsable Security Trusted delivery

Docker
Datacenter adds

RBAC

Never store
secrets in your

app!

Requires Docker
1.13+ in Swarm

Mode

105

Q&A

Docker Engine & Docker
Datacenter Labs Available

Lab

Linux Security
Technologies

Managing Daemon and
Container Privileges

User Management

The Docker Daemon Requires Root
• The Docker daemon (dockerd) is in charge of starting and managing

containers
• Starting and managing containers means working with kernel features

such as namespaces.
• Working with kernel features requires root.
• Verify that your Docker daemon is running as root:

$ ps -aux | grep dockerd
root 22345 0.3 6.4 541936 65812 ? Ssl 09:14 0:16
/usr/bin/dockerd -H fd://

Control Access to the
Docker Daemon
Access to the Docker Daemon (dockerd) is via /var/run/docker.sock
• This is local non-networked Unix socket
• The group owner of the socket is the local docker Unix group

$ sudo usermod -aG docker npoulton

You should grant regular user accounts access to the Docker daemon (via
the socket) by adding them to the local docker Unix group

$ ls -l /var/run/docker.sock
srw-rw---- 1 root docker 0 Mar 30 09:15 /var/run/docker.sock

By Default, Containers Run as Root
$ docker container run -v /bin:/host/bin -it --rm alpine sh

/ # whoami
root

/ # id
uid=0(root) gid=0(root)

/ # rm /host/bin/*

This will delete all
files in the /bin
directory on the
Docker host!
Don’t do it!

By Default, Containers Run as Root

By default

root inside a
container == root outside a

container

Run containers as non-root users
$ docker container run --user 1000:1000 \
-v /bin:/host/bin -it --rm alpine sh

/ $ id
uid=1000 gid=1000

/ $ rm /host/bin/sh
rm: can't remove '/host/bin/sh': Permission denied

/ $ ps
PID USER TIME COMMAND
1 1000 0:00 sh

The container does
not have root
access to the host

The process/app running
in the container is not
running as root inside the
container

User Namespaces to the Rescue
• User namespaces:

– Been in the Linux kernel for a while
– Supported in Docker since 1.10

• How they work:
– Give a container its own isolated set of UIDs and GIDs
– These isolated UIDs and GIDs inside the container are mapped

to non-privileged UIDs and GIDs on the Docker host.

Container user
namespace

Global user namespace
(host)

UID 0: root
UID 1: bin
UID 2: daemon
…

UID 10000:
UID 10001:
UID 10002:
…

User Namespaces: Example
$ sudo systemctl stop docker
$ sudo dockerd --userns-remap=default &
INFO[0000] User namespaces: ID ranges will be mapped to subuid/subgid…
<Snip>

$ docker run -v /bin:/host/bin -it --rm alpine sh

/ # id
uid=0(root) gid=0(root) ...

/ # rm /host/bin/sh
rm: can't remove '/host/bin/sh': Permission denied

Running as
root inside
container NOT running as

root outside
container

User Namespaces: Behind the Scenes

The --userns-remp flag uses
mappings defined in
/etc/subuid and
/etc/subgid

$ sudo dockerd --userns-remap=default &

$ cat /etc/subuid
lxd:100000:65536
root:100000:65536
ubuntu:165536:65536
dockremap:231072:65536

Mapping to the default user namespace uses the dockermap user and
group

cat /etc/subgid
lxd:100000:65536
root:100000:65536
ubuntu:165536:65536
dockremap:231072:65536

Mappings contain three fields:
• User or group name
• Starting subordinate UID/GID
• Number of subordinate UIDs/GIDs available

When you start Docker with the --userns-remap flag the daemon runs within
the confined user namespace.
• As part of the implementation a new Docker environment is created under

/var/lib/docker

• The name of this new subdirectory the mapped UID and the mapped GID

User Namespaces: Behind the Scenes

$ sudo ls -l /var/lib/dockertotal 40
drwx------ 11 231072 231072 4096 Mar 30 11:17 231072.231072

This remapped daemon will operate inside of this 231072.231072
environment
• All of you previously pulled images etc will be inaccessible to this

remapped daemon

User Namespaces: Behind the Scenes
You can verify the namespace
that the daemon is running in
with the docker info command

It is not recommended to
regularly stop and restart the
daemon in new user
namespaces
• Mainly because you cannot

access images etc. in other
namespaces (including the
global namespace)

$ docker info
Containers: 1
Running: 1
Paused: 0
Stopped: 0
Images: 1
Server Version: 17.03.1-ce
Storage Driver: aufs
<Snip>
Docker Root Dir:

/var/lib/docker/231072.231072
...

User Management: Recap
The Docker daemon runs as root
• Grant regular users access via the local docker Unix

group

By default containers run as root
• root inside a container == root outside a container

(default)

User namespaces allow you to run processes as root
inside a container but not be root outside of the
container

User Namespaces

Lab

Q&A

Mandatory Access Control
(MAC)

AppArmor

AppArmor

AppArmor is a Linux kernel security module.

You define profiles that control access to specific
resources such as files and the network.

You can apply these profiles to applications and
containers.

AppArmor

Use the docker info
command to see if AppArmor
is installed and available

124

$ docker info
Containers: 1
Running: 1
Paused: 0
Stopped: 0
Images: 1
Server Version: 17.03.1-ce
<Snip>
Security Options:
apparmor
seccomp
Profile: default
userns

AppArmor: Default Docker
Profile
• Docker creates and loads a

default AppArmor profile for
containers called docker-
default
– Sensible defaults
– Based on

• https://github.com/docker/docker/blob
/master/profiles/apparmor/template.go

• A profile for the Docker
daemon exists but is not
installed and used by default

deny write for all files directly in /proc
deny @{PROC}/* w,
deny write to files not in /proc/<number>/** or
/proc/sys/**
deny @{PROC}/{[^1-9],[^1-9][^0-9],[^1-9s][^0-
9y][^0-9s],[^1-9][^0-9][^0-9][^0-9]*}/** w,
deny /proc/sys except /proc/sys/k* (effectively
/proc/sys/kernel)
deny @{PROC}/sys/[^k]** w,
deny everything except shm* in /proc/sys/kernel/
deny @{PROC}/sys/kernel/{?,??,[^s][^h][^m]**} w,
deny @{PROC}/sysrq-trigger rwklx,
deny @{PROC}/mem rwklx,
deny @{PROC}/kmem rwklx,
deny @{PROC}/kcore rwklx,
deny mount,
deny /sys/[^f]*/** wklx,
deny /sys/f[^s]*/** wklx,
deny /sys/fs/[^c]*/** wklx,
deny /sys/fs/c[^g]*/** wklx,
deny /sys/fs/cg[^r]*/** wklx,
deny /sys/firmware/** rwklx,
deny /sys/kernel/security/** rwklx,

AppArmor: Specifying a Profile

• You can override the default container profile (docker-
default) with the --security-opt flag

$ docker container run --rm -it /
--security-opt apparmor=custom-profile hello-world

$ aa-status
apparmor module is loaded.
14 profiles are loaded.
14 profiles are in enforce mode.

/sbin/dhclient
/usr/bin/lxc-start
...
docker-default
<Snip>

0 profiles are in complain mode.
4 processes have profiles defined.
4 processes are in enforce mode.

/sbin/dhclient (924)
docker-default (26965)
docker-default (27528)
docker-default (27908)

AppArmor: Checking
Status
Use the aa-status
command see the
status of AppArmor
profiles

This is the docker-default policy

These three processes in enforce
mode are three
running containers

AppArmor

Lab

Syscall Filtering

seccomp

seccomp
• seccomp is a Linux kernel module that acts like a firewall for

syscalls
– In the mainline Linux kernel since 2005
– Supported in Docker since Docker 1.10

• Using seccomp-bpf (Berkley Packet Filters) is an extension that
makes seccomp more flexible and granular
– You can create policies that allow granular control of which syscalls are

allowed and which are not
• Docker allows you to associate seccomp policies with containers

– The aim is to control (limit) a containers access to the Docker host’s
kernel

Checking for seccomp
seccomp needs to be enabled in the Docker host’s kernel as
well as in the Docker Engine.

To check for seccomp in the kernel

To check for seccomp in Docker

$ cat /boot/config-`uname -r` | grep CONFIG_SECCOMP=
CONFIG_SECCOMP=y

$ docker info | grep seccomp
seccomp

Docker’s Default seccomp Policy
• Docker automatically applies the default seccomp policy to new

containers
• The aim of the default policy is to provide a sensible out-of-the-box

policy
• You should consider the default policy as moderately protective while

providing wide application compatibility
• The default policy disables over 40 syscalls (Linux has over 300

syscalls)
• The default policy is available here:

https://github.com/docker/docker/blob/master/profiles/seccomp/default.json

Overriding the Default
seccomp Policy
You can use the --security-opt flag to force containers to run
within a custom seccomp policy

$ docker run --rm -it \
--security-opt seccomp=/path/to/seccomp/profile.json \
hello-world

Docker seccomp profiles operate using a whitelist approach that
specifies allowed syscalls. Only syscalls on the whitelist are
permitted

Running a Container
Without a seccomp Policy
You can run containers without a seccomp policy
applied
• This is call running a container unconfined

$ docker run --rm -it \
--security-opt seccomp=unconfined \
hello-world

It is not recommended to run containers unconfined!

Seccomp

Lab

Slicing and Dicing Root
Privileges

Capabilities

Linux Kernel Capabilities
• The Unix world has traditionally divided process into two categories:

– Privileged (root)
– Unprivileged (non-root)

• Privileged processes bypass all kernel permission checks (scary)
• Unprivileged process are subject to all kernel permission checks
• This all or nothing approach often led to processes running as root when

they really only needed a small subset of the privileges assigned to root
processes.

• Modern Linux kernels slice root privileges into smaller chunks called
capabilities.
– It is now possible to assign some root privileges to a process without assigning

them all.

Capabilities: Web Server Example
A container running a web server that only needs to bind to a port below 1024 does not need
to run as root! Should not run as root!

It might be enough to drop all capabilities for that container except
CAP_NET_BIND_SERVICE.

If an intruder is able to escalate to root within the web server container they will be limited to
binding to low numbered privileged ports. They won’t be able to bypass file ownership
checks, kill processes, lock memory, create special files, modify routing tables, set
promiscuous mode, setuid, load kernel modules, chroot, renice processes, ptrace, change
the clock etc…

Net result = reduced attack surface!

Docker and Capabilities
• Docker operates a whitelist

approach to implementing
capabilities.

• If a capability isn’t on the whitelist it
is dropped.

• The list on the right shows the
current capabilities whitelist for the
default profile.
– https://github.com/docker/docker/blob/master/oci/defaults_li

nux.go#L62-L77

• For a full list of capabilities:
– http://man7.org/linux/man-pages/man7/capabilities.7.html

You can use the --cap-add and --cap-drop flags to add an remove
capabilities from a container.

To drop the CAP_NET_BIND_SERVICE capability form a container:

$ docker container run --rm -it --cap-drop NET_BIND_SERVICE alpine sh

The Linux kernel prefixes capabilities with “CAP_”. E.g.
CAP_CHOWN, CAP_NET_BIND_SERVICE etc. Docker does not
use the “CAP_” prefix but otherwise matches the kernel names.

Docker and Capabilities

Docker and Capabilities
To drop all capabilities except the CAP_NET_BIND_SERVICE
capability form a container:

$ docker container run --rm -it \
--cap-drop ALL --cap-add NET_BIND_SERVICE \
alpine sh

To add the CAP_CHOWN capability to a container:

$ docker container run --rm -it \
--cap-add CHOWN \
alpine sh

Docker and Capabilities

Docker cannot currently add capabilities to non-root users
• All of the examples shown in the slides have been adding and removing

capabilities from containers running as root

Privilege escalation is difficult without file-related capabilities
• File-related capabilities are stored in a file’s extended attributes
• Extended attributes are stripped out when Docker Images are built

Capabilities

Lab

Audit Your Docker Security

Docker Bench

Docker Bench
• Open-source tool for running

automated tests
– Inspired by the CIS Docker 1.13

benchmark
– Regularly updated

• Checks Docker host
• Runs against containers on

same host
• Checks for AppArmor, read-only

volumes, etc...
• https://dockerbench.com

Docker Bench
Runs as a container

Runs with a lot of privileges
• It needs to run tests against

the Docker host

$ docker run -it --net host --pid host \
--cap-add audit_control \
-e

DOCKER_CONTENT_TRUST=$DOCKER_CONTENT_TRUST
\

-v /var/lib:/var/lib \
-v

/var/run/docker.sock:/var/run/docker.sock \
-v /usr/lib/systemd:/usr/lib/systemd \
-v /etc:/etc --label

docker_bench_security \
docker/docker-bench-security

• THANK YOU

Thank you

